Imágenes viajeras

Distintas fotografías que se trasladan en el tiempo. Lugares e instantes de ayer, que aparecen detenidos para el hoy y el mañana, cercano o lejano...¿Posible?

jueves, 7 de marzo de 2019

Personas trascendentes por sus logros


Las pioneras en las luchas. Historia de mujeres rebeldes.


Olga Ladyzhenskaya, la matemática soviética rebelde a la que prohibieron estudiar.



Publicó más de 250 investigaciones, siete monografías y un libro, donde dejó plasmados conceptos matemáticos de enorme influencia en áreas tan dispares como la probabilística, meteorología y la medicina cardiovascular.

Olga collage


Olga Ladyzhenskaya fue una joven que, a pesar de haber egresado de secundaria con excelentes notas, le negaron el ingreso en la Universidad Estatal de Leningrado.
¿La razón? Su padre, Aleksandr Ivanovich, era considerado un "enemigo del Estado" soviético.
Ladyzhenskaya nació hace justo 96 años, el 7 de marzo de 1922, en Kologriv, un pueblo rural ubicado en el oeste de la actual Rusia. Sin embargo, cuando tenía solo 15 años, su padre fue apresado y luego ejecutado por las autoridades soviéticas por cargos de traición.
La sombra de ese duelo se extendería luego con el rechazo de la Universidad Estatal de Leningrado en 1939 y, paradójicamente, la llevaría a seguir los pasos de su padre y estudiar docencia en matemáticas.
Tras 4 años como profesora, finalmente logró ser aceptada en la Universidad Estatal de Moscú e incluso hacer su postgrado en el instituto que la rechazó, donde luego pasaría a trabajar como investigadora.
Desde entonces, Ladyzhenskaya ascendió en el ambiente científico nacionalhasta convertirse en la presidenta de la Sociedad Matemática de San Petersburgo y una de las más influyentes pensadoras de su época. Y aún así, "siempre fue vista como una rebelde y tratada como tal por el gobierno soviético", dijo Peter D. Lax del Instituto Courant de Ciencias Matemáticas de la Universidad de Nueva York al diario The New York Times, tras la muerte de la investigadora en 2004, a los 81 años.

Sus ideas

Los trabajos de Ladyzhenskaya se centraron en ecuaciones diferenciales, la misma área en la que se especializó el matemático estadounidense y premio Nobel John Nash, retratado por Russell Crowe en la película "Una menta brillante" (2002).
Por eso, muchas veces los han comparado.
Si bien las investigaciones de Ladyzhenskaya tienen vastas aplicaciones, es probable que su mayor aporte para el común de los mortales sea en el ámbito de la meteorología.
Es que gracias a sus cálculos, fue posible predecir con mayor exactitud el movimiento de las nubes en las tormentas y, por ende, tener mejores pronósticos del tiempo.
Pero además de su trabajo en las ecuaciones conocidas como Navier-Stokes, sus papers impulsaron avances en el estudio de los fluidos dinámicos, dos elementos incorporados en el diseño del doodle de Google que la homenajea este jueves.
Según un extenso texto publicado en 2004 por la Sociedad Estadounidense de Matemáticas en homenaje a Ladyzhenskaya, su carrera "muestra que incluso en los días más oscuros del totalitarismo soviético, hubo académicos valientes".

SOCIEDAD MATEMÁTICA DE SAN PETERSBURGO


Image captionLa Sociedad Matemática de San Petersburgo homenajea a quien fuera una de sus integrantes desde su fundación y luego su vicepresidenta, presidenta y miembro honorario.

Fuente: https://www.bbc.com/mundo/noticias-47483337
                                          ---------------------------------------------------

Lise Meitner, la única mujer que tiene un elemento en la tabla periódica en su honor: el meitnerio

  • 19 octubre 2017

                    Lise Meitner
       GETTY IMAGES


Image captionLise Meitner nació en Austria en 1878, pero se hizo ciudadana sueca en 1949.
La princesa Europa, la madre Niobe y las diosas Pallas Athena, Selene y Freyja son algunas de las mujeres a quienes se han dedicado elementos de la tabla periódica. Todas ellas son figuras mitológicas.
Ni siquiera la dos veces ganadora del premio Nobel Marie Curie tiene su propio elemento. El curio, en verdad, fue bautizado tanto por ella como por su esposo, Pierre.
La única mujer real que fue honrada en exclusiva con un elemento en la tabla periódica es la física teórica austríaca Lise Meitner y su meitnerio.
A lo largo de sus 89 años de vida, Meitner acumuló suficientes logros como para recibir este alto reconocimiento que comparte con unos pocos científicos de la historia, como Nicolás Copérnico (copernicio), Alfred Nobel (nobelio) y Albert Einstein (einstenio).
(El nombre 'meitnerio' busca) hacer justicia a una víctima del racismo alemán y dar el justo crédito a una vida y trabajo científicos"
Peter Armbruster, científico alemán que codescubrió dicho elemento químico
Codescubrió el llamado efecto Auger y varios nuevos isótopos, uno de los cuales llevó a su vez a su hallazgo del elemento químico protactinio.
Además, fue la segunda mujer en conseguir un doctorado en física en la Universidad de Viena, la primera de toda Alemania en lograr el puesto de profesora titular de física en la Universidad de Berlín y la primera investigadora en integrar la Academia Austríaca de Ciencias.
Su mayor logro, no obstante, fue dar una explicación teórica la fisión nuclear, nombre que acuñó junto con su sobrino, Otto Frisch.
Tabla periódica donde se destaca el elemento meitnerio.Derechos de autor de la imagenISTOCK
Image captionEl meitnerio es un elemento sintético radiactivo cuyo símbolo es Mt y su número atómico, 109.
Sus investigaciones fueron cruciales para este descubrimiento que dio inicio a la era atómica.
Sin embargo, la decisión de bautizar meitnerio al elemento radiactivo de número atómico 109, fue tanto un elogio a la trayectoria de la austríaca como una compensación por uno de los mayores errores históricos cometido por los premios Nobel.

La dupla perfecta

Nacida en Viena en 1878 en el seno de una familia judía, Meitner era la tercera de ocho hermanos.
Si bien en aquel entonces las mujeres no tenían permitido acceder a instituciones de educación superior, contó con el apoyo de sus padres para estudiar en un centro privado y luego completar su doctorado.

                Lise Meitner (1878-1968) y Otto Hahn (1879-1968) en su laboratorio en Alemania en 1913. (Foto: Acc. 90-105 - Science Service, Records, 1920s-1970s, Smithsonian Institution Archives)
         En tanto física teórica y químico experimental, Meitner y Hahn se complementaban a la perfección en sus investigaciones. (Foto: Archivos del Instituto Smithsonian)



Ya en Berlín, en 1907, consiguió que el físico y matemático alemán Max Planck, considerado el fundador de la teoría cuántica, hiciera una excepción y le permitiera asistir a sus clases.
Fue justamente en la Universidad de Berlín que conoció a Otto Hahn, con quien formó la dupla científica perfecta durante casi 30 años.
La combinación de una física teórica con un químico experimental demostró ser muy fructífera, incluso durante los años en que Meitner no tenía permitido el acceso a los laboratorios por ser mujer o cuando debió huir de Alemania y colaborar con Hahn a la distancia.

Misterio atómico

El descubrimiento del neutrón a principios de la década de 1930 desató una carrera entre científicos de todo el mundo por crear de forma sintética elementos más pesados que el uranio.
Ya en Berlín, en 1907, consiguió que el físico y matemático alemán Max Planck, considerado el fundador de la teoría cuántica, hiciera una excepción y le permitiera asistir a sus clases.
Fue justamente en la Universidad de Berlín que conoció a Otto Hahn, con quien formó la dupla científica perfecta durante casi 30 años.
La combinación de una física teórica con un químico experimental demostró ser muy fructífera, incluso durante los años en que Meitner no tenía permitido el acceso a los laboratorios por ser mujer o cuando debió huir de Alemania y colaborar con Hahn a la distancia.

Misterio atómico

El descubrimiento del neutrón a principios de la década de 1930 desató una carrera entre científicos de todo el mundo por crear de forma sintética elementos más pesados que el uranio.
Estrado donde se anunciaron los premios Nobel 2017.
GETTY IMAGES

Sólo 17 mujeres recibieron el premio Nobel en las tres categorías científicas desde que se creó el galardón, en 1901..


Sin embargo, con la llegada de Adolf Hitler al poder en 1933, Meitner tuvo cada vez más trabas para poder trabajar. Finalmente, en 1938, debió escapar a Holanda y luego a Suecia con documentos falsos.
Meitner y Hahn siguieron en contacto de forma diaria a través de cartas e incluso llegaron a reunirse en Copenhague a escondidas del régimen nazi.
El objetivo del encuentro era conversar sobre un proyecto que ella había estado liderando en Alemania y que, luego de semanas de insistencia, él había aceptado continuar en su ausencia, cuenta un artículo de la revista estadounidense Scientific American.
"Sus experimentos parecían mostrar un sorprendente descubrimiento: el uranio se divide en elementos más ligeros al ser bombardeado con neutrones", explican en el artículo.
Hasta entonces, la comunidad científica creía que el uranio se dividiría en elementos más pesados.
       Albert Einstein
     GETTY IMAGES


Albert Einstein elogió públicamente a Lise Meitner llamándole "nuestra Marie Curie".


Hahn estaba confundido. "Tal vez tú puedas encontrar una explicación fantástica", le escribió a Meitner, según la biografía A life in Physics ("Una vida en la física") de Ruth Lewin Sime.
En cuestión de días, la austríaca junto con su sobrino Frisch, también un destacado físico, lograron crear el modelo teórico que explica la fisión nuclear.
A pesar de que la participación de Meitner fue crucial y estaba bien documentada en cartas, Hahn no la incluyó como coautora en la publicación científicadonde explicó este descubrimiento que luego permitió el desarrollo de la energía y armas nucleares.
Darle crédito era una movida peligrosa en tiempos de la Alemania nazi y ella lo entendió, escribió Lewin Sime. Aún cuando esto derivó en un Nobel sólo para él.

El Nobel de Hahn

En 1944, Hahn recibió en solitario el premio Nobel de Química "por su descubrimiento de la fisión de núcleos pesados".


Planta de energía nuclear.Derechos de autor de la imagenGETTY IMAGES
Image captionEl descubrimiento de la fisión nuclear derivó en el desarrollo de la energía y las armas nucleares.

Si bien en ese momento Hahn reconoció la participación de Meitner en el hallazgo, con el tiempo llegaría a negar el rol de su colega, según Scientific American.
A lo largo de los años, este Nobel ha sido citado por analistas y medios como una de las máximas injusticias de la Academia Sueca.
No obstante, lo que de verdad ella le criticó a Hahn y otros científicos de la época fue su colaboración con el régimen de Hitler.
El descubrimiento de la fisión nuclear es muy trascendental e incluso peligroso, pero sobre todo, está lleno de promesas".
A. Westgren, presidente del Comité Químico del Nobel en 1944, al anunciar el premio para Otto Hahn
"Todos ustedes trabajaron para la Alemania nazi. Y sólo ofrecieron una resistencia pasiva", le escribió a Hahn, según el libro Heisenberg and the Nazi atomic bomb project ("Heisenberg y el proyecto de la bomba atómica nazi") de Paul Lawrence Rose.
"Claro que, para limpiar su consciencia, ayudaron a alguna persona perseguida por ahí y por acá, pero se permitió que mataran a millones de seres humanos inocentes sin que se emitiera ningún tipo de protesta", agregó.


La física austríaca Lise Meitner (1878-1968) junto al químico alemán Otto Hahn (1879-1968) en la inauguración del Instituto Hahn-Meitner para la investigación nuclear en Berlín, el 14 de marzo de 1959.Derechos de autor de la imagenGETTY IMAGES
Image captionHahn y Meitner fueron compañeros de investigación por casi 30 años y amigos íntimos, pero terminaron peleados.

Meitner también criticó el desarrollo de armas nucleares, negándose a participar en el proyecto Manhattan de Estados Unidos diciendo su icónica frase: "¡Nunca voy a tener nada que ver con una bomba!".

"Hacer justicia"

El 29 de agosto de 1982, los investigadores alemanes Peter Armbruster y Gottfried Münzenberg lograron sintetizar por primera vez el elemento radiactivo que luego sería bautizado como meitnerio.
Armbruster explicó entonces que el objetivo era "hacer justicia a una víctima del racismo alemán y dar el justo crédito a una vida y trabajo científicos".
Pasaron 35 años y el meitnerio todavía no tiene una utilidad probada. Pero, según la revista Nature, éste "no debe ser subestimado ya que nos recuerda una parte importante de la historia y de la ciencia".
En definitiva, esta compensación por el Nobel no entregado terminó dando a Meitner el acceso a un club mucho más exclusivo: el de los científicos con un elemento químico con su nombre.

Fuente: https://www.bbc.com/mundo/noticias-41610091


                                -------------------------------------------------------




Emmy Noether, la mujer cuyo teorema revolucionó la física y a quien Einstein calificó de un absoluto "genio matemático"


              Emmy Noether
                                                                                   GETTY IMAGES
         Noether terminó su vida académica en Estados Unidos.


Cuando la alemana Emmy Noether quiso estudiar matemáticas, no estaba permitido que las mujeres se inscribieran en la universidad.
Años después, cuando consiguió que le dieran permiso para dar clases a estudiantes universitarios, no recibió salario.
Aun así, para Albert Einstein, "la señorita Noether fue el genio matemático creativo más importante que haya existido desde que comenzó la educación superior para las mujeres".
Se le considera la madre del algebra moderna con sus teorías sobre anillos y cuerpos, pero su aporte a la ciencia no se restringe a las matemáticas.
Su trabajo es fundamental para entender la teoría de la relatividad.

Apuntes de EinsteinDerechos de autor de la imagenGETTY IMAGES
Image captionUn detalle de los apuntes de Albert Einstein sobre la Teoría General de la Relatividad.

Y tampoco se limita a ella.
Noether es clave para comprender todas las teorías de la física.
"Al conocer su historia te preguntas: ¿qué otras contribuciones hubiese hecho una persona con ese tipo de genio matemático si todas las puertas hubiesen estado abiertas para ella desde el primer día?", le dice a BBC Mundo Mayly Sánchez, profesora de Física del departamento de Física y Astronomía de la Universidad del Estado de Iowa, en Estados Unidos.

Sin salario

Nació en 1882 y su padre, el matemático Max Noether, enseñaba en la Universidad de Erlangen, en Baviera.
      Emmy Noether
                                                                                                                                  Image SPL

Derechos de autor de la imagen

                   Emmy Noether nació en el seno de una familia apasionada por las matemáticas.             
El claustro de esa casa de estudios había dicho que permitir que las mujeres se registraran "derrocaría todo el orden académico".
Sin embargo, dos años después -indica la Sociedad Estadounidense de Física (APS, por sus siglas en inglés: American Physical Society)- Noether fue una de las dos estudiantes a la que se le permitió inscribirse en esa universidad.
Pero no con los mismos derechos que el resto de estudiantes.
Sólo se le permitía entrar como oyente a las clases y eso si los profesores daban la autorización expresa de que podía entrar al aula.
"Pero eso fue suficiente para que pasara el examen de graduación en 1903 y para que calificara a un título equivalente al de una licenciatura", indica Michael Lucibella, autor de la biografía sobre Noether publicada por APS.
"Pasó el año siguiente estudiando en la Universidad de Gotinga, pero regresó a Erlangen cuando la universidad finalmente revocó las restricciones contra las estudiantes y terminó su disertación sobre invariantes para las formas biquadráticas ternarias en 1907", señala el escritor.
Pese a que la universidad dio un paso adelante para permitir a mujeres estudiantes, continuaba excluyendo a las mujeres de tener posiciones en la facultad.
"Noether enseñó en Erlangen por los siguientes siete años sin salario, en algunas ocasiones reemplazando a su padre", indica Lucibella.

"Somos una universidad, no un sauna"

En 1915, el gran matemático alemán David Hilbert trató de llevarla a la Universidad de Gotinga, pero recibió el rechazo de sus colegas en el departamento de matemáticas.
No veo por qué el sexo de los candidatos sea un argumento contra su admisión. Somos una universidad, no un sauna
David Hilbert, matemático
"¿Qué pensarán nuestros soldados cuando regresen a la universidad y encuentren que se les pedirá que aprendan de una mujer?", un profesor se quejó de la propuesta.
A lo que Hilbert respondió:
"No veo por qué el sexo de los candidatos sea un argumento contra su admisión. Somos una universidad, no un sauna".
Noether tuvo que dar clases bajo el nombre de Hilbert por los siguientes cuatro años y sin pago alguno.
Lucibella explica que la esperanza de Hilbert de contar con la matemática en la Universidad de Gotinga era que su conocimiento y experiencia sobre "la teoría invariante -los números que se mantienen constantes incluso aunque sean manipulados de diferentes maneras- pudiera ser llevada a la incipiente teoría general de la relatividad de Albert Einstein, que parecía violar la (ley) de la conservación de energía".

El teorema de Noether

Noether desarrolló un teorema que es clave para entender la física de partículas elementales y la teoría cuántica de campos.
En pocas palabras, "para comprender toda la física más sofisticada", le dice a BBC Mundo Manuel Lozano Leyva, catedrático de Física Atómica y Nuclear de la Universidad de Sevilla.

VinoDerechos de autor de la imagenAFP/GETTY IMAGES
Image captionUna copa de vino para entender un teorema clave en la física.

"Cuando Einstein vio el trabajo de Noether sobre las invariantes, le escribió a Hilbert: 'Estoy impresionado de que esas cosas puedan ser entendidas de una manera tan general. La vieja guardia de Gotinga debería aprender algunas lecciones de la señorita Noether. Se ve que sabe de lo suyo'", indica la biografía de APS.
Pero en qué consiste este teorema.
Le pasamos la tiza al profesor Lozano, quien durante 30 años se lo enseñó a sus alumnos en España.



"El teorema conceptualmente es muy sencillo y matemáticamente muy complicado. Se trata de relacionar la simetría con las cantidades conservadas", le dice el docente a BBC Mundo.
"¿Qué es una simetría?", empieza.
"Imagínese que tengo una copa de vino en la mano y le digo que cierre los ojos. Mientras los tiene cerrados, giro la copa en su eje y después le digo que los abra. Seguramente no se dará cuenta si la copa se ha movido o no".
"Pero si el giro que hago es perpendicular a ese eje, es decir, le doy la vuelta a la copa, y le digo que abra los ojos, sí se dará cuenta que ha habido una transformación, que le ha pasado algo a la copa".
"Eso significa que la copa es simétrica con respecto a las rotaciones en relación a un eje y no es simétrica respecto a las rotaciones en otro eje".
Es un teorema sumamente elegante, trae la belleza de un concepto de simetría a lo que son los principios de la física
Mayly Sánchez, Universidad del Estado de Iowa
"Ahora piense", señala el profesor, "en cantidades físicas que todo el mundo conoce como lo es la energía, que ni se crea ni se destruye, sino que se transforma. Eso se llama una cantidad conservada".
"Lo que hizo Emmy Noether fue fundamentalmente relacionar la simetría de un sistema con las cantidades físicas que se conservan y esas cantidades son una herramienta fundamental a la hora de plantear problemas y de resolverlos en física".
Y eso afecta a todos los sistemas físicos, desde el sistema planetario hasta un cristal, los metales. "¡Todo!", dice con emoción el profesor.

"El teorema más bello del mundo"

El teorema creado por la científica alemana ha recibido un sinnúmero de adjetivos y no precisamente fríos. "Lo llaman el teorema más bello del mundo, pero no es solo que sea hermoso por las cuestiones de la simetría sino que es de una potencia matemática tremenda y de una potencia de cálculo fantástica", indica Lozano.
"Mis estudiantes quedaban maravillados cuando se los enseñaba porque, aunque sea matemáticamente difícil de formular, las consecuencias son muy grandes".
"A esta mujer le debemos mucho todos los físicos", señala el académico desde España.
Y esa opinión la comparte la profesora Sánchez desde Estados Unidos.
"Es un teorema sumamente elegante, trae la belleza de un concepto de simetría a lo que son los principios de la física", le dice a BBC Mundo.

Fuente: https://www.bbc.com/mundo/noticias-39231616

martes, 15 de enero de 2019

El desarme y el equilibrio por la Paz.


Acuerdos por la Paz

                             
   Tratados pensando en el Futuro del Planeta.                       
- La No Agresión, el desarme y el Equilibrio de Poder.
- Ненападение, разоружение и баланс сил.
- Non-aggression, disarmament and the           Balance of Power.                                      
                                  

                        John Simpson, periodista de la BBC, realiza pregunta al Presidente de Rusia, Vladimir Putin respecto a las amenazas de conflicto del país Euro-Asiático. Año 2014
Lenguaje: Español, Inglés y Ruso.
                                               Video de YouTube.                                  

domingo, 6 de enero de 2019

Serios efectos del Calentamiento Global.


Las notables rupturas de hielos en las regiones de la Antartida




EL CAMBIO CLIMÁTICO Y LA ANTÁRTIDA.


El 12 de julio de 2017, un gigantesco bloque de hielo se separó definitivamente de una de las plataformas de hielo que componen la costa antártica. Se trata del iceberg A-68.
Este nuevo iceberg es uno de los mayores que el mundo ha conocido, con 5.800 km². Su escisión de la plataforma Larsen C supone un nuevo escenario de vulnerabilidad ante futuros episodios como el que estamos narrando.
Hace más de una década que los científicos de la Universidad de Swansea estaban realizando el seguimiento de una gran grieta que empezó a acelerar su desarrollo a partir de 2014, hasta que finalmente el bloque se desprendió.
El Proyecto MIDAS ha sido el encargado de llevar a cabo esta observación a través de las imágenes satélite, como el Aqua MODIS de la NASA. Gracias a estos instrumentos orbitales, el equipo de investigación pudo captar la presencia de agua en la grieta que se abría paso a lo largo de la plataforma Larsen C, en paralelo a la costa. Una señal inequívoca del desprendimiento.
 http://www.geografiainfinita.com/wp-content/uploads/2017/07/iceberg-79389_960_720.jpg

Plataforma Larsen C y el iceberg A-68.

Plataforma Larsen C y Iceberg A-68   http://modis.gsfc.nasa.gov/

Ahora, un iceberg del tamaño de la provincia de Alicante, con 200 metros de grosor, comenzará a navegar a la deriva. Lo hará arrastrado por las corrientes oceánicas del Mar de Weddell. No obstante, este proceso llevará muchos años y de momento cualquier predicción se hará en base a pasados acontecimientos en la misma región austral.
De este modo, la Península Antártica sigue modificando su línea de costa y reduciendo su extensión. El A-68 es sólo uno de los icebergs que se han ido separando de las plataformas de hielo de la Antártida.
Plataformas de hielo: el origen de los icebergs
Las plataformas de hielo son la extensión de los glaciares continentales sobre la superficie del mar. Actualmente podemos encontrarlas en el norte de Canadá, en Groenlandia y la Antártida. Son el resultado del flujo de la masa de hielo continental hacia la costa. Su borde externo presenta paredes verticales de hasta 30 metros de altura, razón por la cual los primeros exploradores la denominaron como “La Gran Barrera”.
 Dimensioìn de la plataforma de hielo comparada con la masa de hielo continental

Dimensión de la Plataforma de hielo comparada con la Masa de hielo Continental. http://antarctica.gov.au/

Estas paredes verticales surgen, como en el caso del iceberg A-68, por el desprendimiento de grandes bloques glaciares de la plataforma original, que suelen presentar signos de inestabilidad al encontrarse en flotación sobre el agua.
Esto, sumado al aumento de las temperaturas de los últimos años, genera tensiones y esfuerzos provocados por su propio peso. Se favorece así la aparición de grietas que inevitablemente conducen a la formación de los icebergs.
https://pbs.twimg.com/media/DEiK5LrWAAAjKu5.png
Estas son algunas de las plataformas de hielo más grandes de La Antártida:
·       Ross
·       Ronne-Filchner
·       Amery
·       Shackelton
·       George VI
·       Wilkins
·       Larsen
·       Riiser-Larsen

Plataformas de hielo existentes en La Antaìrtida
Plataformas de Hielo existentes en la Antártida. Fuente: http://nsidc.org/

El destino del iceberg A-68 y la Plataforma Larsen C

Con un peso de más de un gigatón (1000 millones de toneladas), una de las grandes preocupaciones era que el desprendimiento del iceberg A-68 incrementase el nivel del mar. Afortunadamente, el equipo investigador del Proyecto MIDAS no cree que se produzca, pues el bloque helado ya se encontraba en estado de flotación antes de la fractura.
Una vez emancipado, el nuevo iceberg puede tardar años o décadas en desplazarse lejos de las costas antárticas, aunque siempre es difícil de predecir. De acuerdo con otros acontecimientos pasados, las corrientes marinas del Mar de Weddell podrían arrastrar a A-68 hasta la Isla de Georgia del Sur.
Allí, el inmenso bloque encallaría dada la menor profundidad de la plataforma continental que rodea la isla (recordemos que el iceberg A-68 tiene un grosor aproximado de 200 metros). Una vez varado, su destino sería su fusión y fragmentación en bloques menores..

Corrientes marinas en el entorno de La Antaìrtida. En rojo, el origen del iceberg A-68. En amarillo, la Isla Georgia del Sur.
Isla Georgia del Sur. Fuente: teara.govt.nz

Una alteración del ciclo de la cadena alimentaria
Pero esta situación supone un impacto de gran magnitud para el ecosistema marino, según Eugene Murphy, del British Antartic Survey, llegando a alterar el ciclo de la cadena alimentaria.
Al igual que sucedió con varios icebergs conocidos como A-38, A-22B o B-10A, la fusión del hielo en el área circundante aportaría una gran cantidad de agua dulce a un entorno marino. Esto modificaría la circulación de las corrientes en la plataforma debido al cambio de la densidad del agua.
Es cierto que también acarrearía un volumen de sedimentos rocosos desde el continente antártico, y que son una fuente de nutrientes esencial para el crecimiento de algas y diatomeas.
Pero lo más grave es que un iceberg encallado de esas dimensiones bloquearía la llegada del kril. Se trata de un diminuto crustáceo que es clave para la cadena alimentaria. Su aparición está asociada a las corrientes marinas habituales en el entorno de la isla.
https://pbs.twimg.com/media/DEXeQttXcAA4XK9.jpg
Polo Norte deshielandose, observe Ud el tamaño, la teoría del calentamiento global va ganado a la teoría del enfriamiento del globo.
El segmento C de la Plataforma Larsen podría regenerarse
Mientras tanto, el segmento Larsen C de la Plataforma Larsen (en honor al capitán noruego Carl A. Larsen) ya ha visto reducida su área en un 12% tras la separación del iceberg A-68. El profesor Adrian Luckman, investigador principal del Proyecto MIDAS, señala que la placa de hielo podría regenerarse gradualmente si el patrón de temperatura en La Antártida deja de ascender.
Luckman también cree que podría sufrir otros desprendimientos, lo que abocaría al segmento Larsen C al colapso, como ya sucedió con los segmentos A y B, en 1995 y 2002, respectivamente.
Segmentos de la Plataforma Larsen y su peìrdida de hielo entre 1960 y 2008.
Segmentos de la Plataforma Larsen y sus pérdida de hielos entre 1960 y 2008. Fuente: pri.org.
Imagen https://pbs.twimg.com/media/DD9suoaXkAAHYtG.jpg

https://pbs.twimg.com/media/DD9cRbZWsAA45j9.jpg
Satélite CryoSat dedicado a monitorear los polos

https://pbs.twimg.com/media/C9BEqKpUIAEF015.jpg
Equipo de Científicos 

https://pbs.twimg.com/media/C8gSmkCWAAQo9Lp.jpg
Equipo de Pilotos.
Proyecto Midas -NASA-. Satélite Aqua Modis -NASA-


A-68 Adrift

A-68 Adrift
September 16, 2017

A lot happened on the Antarctic Peninsula under the cloak of the 2017 polar night—most notably, the calving of a massive iceberg from the Larsen C ice shelf. At the time (July), scientists had to rely on thermal imagery and radar data to observe the break and to watch the subsequent motion of the ice.
By August, scientists started getting their first sunlit views of the new iceberg, which the U.S. National Ice Center named A-68. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured a wide view of the berg on September 11. A few days later, on September 16, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) on Landsat 8 captured these detailed images.
The image on the left shows the icebergs in natural color. The rifts on the main berg and ice shelf stand out, while clouds on the east side cast a shadow on the berg. The thermal image on the right shows the same area in false-color. Note that the clouds over the ice shelf do not show up as well in the thermal image because they are about the same temperature as the shelf. Thermal imagery has the advantage of showing where the colder ice ends and “warm” water of the Weddell Sea begins. It also indicates differences in the thickness of ice types. For example, the mélange is thicker (has a colder signal) than the frazil ice, but thinner (warmer signal) than the shelf and icebergs.
Both images show a thin layer of frazil ice, which does not offer much resistance as winds, tides, and currents try to move the massive iceberg away from the Larsen C ice shelf. In a few weeks of observations, scientists have seen the passage widen between the main iceberg and the front of the shelf. This slow widening comes after an initial back-and-forth movement in July broke the main berg into two large pieces, which the U.S. National Ice Center named A-68A and A-68B. The collisions also produced a handful of pieces too small to be named.

September 16, 2017

One unnamed iceberg, shown in detail above, has been drifting northward in the passage since the break. Notice how the edges of this piece appear much sharper than the edges of the shelf or A-68A. Those edges have already been rounded by blowing snow and gravity, but the smaller piece has been battered and reshaped by recent collisions, resulting in its highly defined edges.

Fuente:
Information:

Instruments:
Landsat 8 — OLI
Landsat 8 — TIRS
NASA Earth Observatory images by Joshua Stevens using Landsat data from the U.S. Geological Survey. Story by Kathryn Hansen.

References & Resources